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A one-dimensional finite element method is described for computing the mass diffusion of a 
chemical species through a domain of two fluids in contact with each other. Within each 
region coupled binary convection-diffusion equations are satisfied. Concentration jump 
conditions are imposed across the interface. The interface is allowed to move, obeying a 
differential equation similar to that encountered in the Stefan problem. Two-dimensional finite 
elements are used in the space-time plane. These are allowed to evolve so as to maintain an 
element boundary along the moving interface. The discretization is based on bilinear finite 
elements in a local coordinate system. Example calculations and calculations to study 
convergence of the algorithm are described. 

1. INTRODUCTION 

Enhanced oil recovery (EOR) involves injecting fluids into an oil reservoir and, by 
contacting the oil with the fluid, releasing oil that would not otherwise be recovered 
from the rock matrix. This contact is brought about on the bulk scale by the 
convection of the fluids through the reservoir and this is modelled in large multi- 
dimensional simulators used to study EOR methods. These simulators usually assume 
thermodynamic equilibrium between the oil and injected fluids. However, on the pore 
scale such equilibrium may be achieved only slowly as the result of diffusion- 
controlled processes. The model described in this paper has been developed to study 
this aspect of EOR. 

The oil in the reservoir is assumed to be trapped in a one-dimensional pore and 
insulated from the injected EOR fluid by a barrier of water through which the EOR 
fluid must diffuse to interact with the oil. The oil swells as a result of absorption of 
the EOR fluid causing the water barrier to be displaced and eroded by the EOR fluid 
flowing outside the oil-containing pore (see Fig. 1). 

The problem of calculating the chemical concentrations and interface motion is 
related to the Stefan problem with chemical concentrations replacing temperature and 
concentration jump conditions at the oil/water interface replacing a fixed temperature 
at the melting front. Bird et al. describe the convection-diffusion equations satisfied by 
a chemical species [ 11. In the present application the convection results from density 
and volume changes that arise because of the changing composition of the fluid 
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FIG. 1. One-dimensional pore model. 

mixtures. This introduces a coupling into the problem not present in the simpler 
Stefan problem. 

Bonnerot and Jamet have reported using finite element calculation models for the 
solution of the Stefan problem [2-4]. Space-time finite elements were used with a 
time evolution of the elements chosen so that an element edge was oriented along the 
melting boundary. The models represented only the region to one side of the melting 
front. 

Varoglu and Finn used the same metod for the solution of the convection-diffusion 
equation [5 1. Characteristics were used to define the evolution of the element boun- 
daries as this largely eliminated oscillations, overshoots and numerical dispersion in 
the calculation of convection-dominated flows. 

The method described in this paper is a development of the work described above. 
As in the Stefan problem the space-time finite elements are chosen so that an element 
edge lies along the moving boundary but the regions on both sides of the interface are 
represented. As will be seen, the boundary moves at a different velocity from the 
mass average velocity appearing in the convection-diffusion equation so that the 
characteristic method of Varoglu could only be employed by considering the regions 
on either side of the interface separately. For the present this has not proved 
necessary and the element boundaries within the two regions have been moved 
according to an arbitrary recipe. The conditions at the moving interface are more 
complicated than those of the Stefan problem and an alternative treatment to that 
used by Bonnerot and Jamet has been devised. 
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2. DESCRIPTION OF THE PROBLEM 

We take component 1 to be oil, component 2 to be water and component 3 to be 
the EOR fluid. Components 1 and 2 are assumed to be mutually insoluble so that 
only binary mixtures have to be considered. Bird et al. [ 1 ] derive the convection- 
diffusion equations used below to describe mass transport in these binary mixtures. 

$i+$o, i = 1, 3, 0 < x < u(t), t > 0 
i= 2,3, a(t) < x < L, t > 0 

with 

Wi/P> ni=piv-pD,p 
ax ’ 

i= 1,3, 0 < x < u(t), t > 0 

a(Pi/P> ni=piv-pD,p 
ax ’ 

i= 2,3, u(t) < x < L, t > 0 

(2) 

where p,(x, t) is the mass density of component i, p(pl, pz, p3) is the total density of 
the fluid given by an equation of state, v(x, t) is the mass average velocity, 
Dj(pl, p2, pj) are the binary diffusion coefficients, u(t) is the position of the interface 
and L is the half-pore length. 

There is a compatibility condition 

CPi=P 

and the mutual insolubility of components 1 and 2 means that 

Pl(X, t> = 0, 

P&G 0 = 0, 

u(t) < x < L (4) 

0 < x < u(t). (5) 

An overall balance equation may be obtained by summing Eq. (1) over 
components and using the compatibility condition to obtain 

aP a(Pu) = o 
at+- . 

3X 

At the interface the component mass densities will not be continuous. For 
components 1 and 2, Eqs. (4) and (5) impose the interface conditions. For 
component 3 the size of the discontinuity will be determined by its solubility in 
components 1 and 2. This may be represented by 

P, w> + 9 0 = (2 * P&w -7 tS* (7) 

Equation (7) is the equivalent of assuming the continuity of the mass concentration 
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of component 3 away from the interface. A mass balance for each component, 
equivalent to Eq. (l), may be performed around the interface. This results in 

= n,(u(t)f, t) - ni(a(t)-, t), i= 1,2,3 (8) 

which is known as Kotchine’s theorem. This, and other interface balance models, is 
discussed by Slattery [6]. 

Equation (8) may be summed over components which, after using Eqs. (2) and (3), 
results in a total density balance, equivalent to Eq. (6), given by 

= {p@(t)‘, f) * ~(40’, f> -P@(f)-, f> . u(4t>-, [)I. (9) 

In general there will be different total densities on both sides of the interface. Hence, 
from this last equation it may be seen that the mass average velocity will usually 
undergo a step change at the interface and that the interface velocity, da/&, will not 
be the same as the mass average velocity. 

The boundary conditions are taken to be 

P&L 0 = G(f), t>O (10) 

n,(O, t) = 0, i= 1,2,3, t>O (11) 

and 

v(0, t) = 0, t>O (12) 

and the initial conditions for the model are 

P3Gc 0) = g(x) 
u(0) = u” 

and 
v(x, 0) = 0. 

3. METHOD OF SOLUTION 

Iteration is necessary to solve the above equation set because of the non-linearities 
produced by both the product of unknowns pi and v, which occur in Eq. (2), and also 
because of the moving boundary. Before discussing the finite element formulation we 
outline below the iteration procedure used to resolve the non-linearities. The 
procedure is repeated for every timestep. 
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3.1. Iterative Solution Method 

6) 

(ii) 

(iii) 

L 

(iv> 

(VI 

64 
(vii) 

Guess average interface velocity da/dt during the timestep (set as the 
value from previous timestep). 
Guess total density distribution {p} at the end of the timestep (set as the 
distribution at the start of the timestep). 
Guess velocity profile {v} at the end of the timestep (set as the profile at 
the start of the timestep). 
Find component 3 mass density distribution {p3} using Eqs. (l), (2), (7), 
(8), (10) and (11). 
Revise overall density distribution {p} using {p3}, Eq. (3) and equation of 
state for P(P~, p2, PJ. 

Calculate new velocity profile {v} using (6), (9) and (12). 
Calculate new interface velocity da/dt using Eq. (8) for components 1 
or 2. 

In the calculations performed so far adequate convergence has been achieved using 
simple iteration in the loop. In the following sections we describe steps in the iteration 
procedure in more detail. 

3.2. Construction of Ql Finite Element Basis Functions 

An important feature of the problem posed is the need to represent the interface 
explicitly in any calculation. Thus, any time-space discretization has to allow the 
meshes to deform so as to follow the interface. The ability of the finite element 
method to routinely accommodate irregularly shaped domains may be used to 
advantage in this type of problem. 

In the method the time-space domain is divided into finite elements as shown in 
Fig. 2. Each quadrangular element can be mapped onto a unit square in the ({, ‘I) 
plane as shown in Fig. 3. Bilinear basis functions are defined in the (r, II) space by 

4, = (1 - a(1 - rl), O<C<l, O<r<l 

42 = C(l - rl), o<y< 1, o<r< 1 

$3 = (1 - m o<y<1, O<r<l 

44 = OL o<y< 1, O<r<l 

$j = O, elsewhere j = 1, 2, 3,4. 

These are used to define basis functions in the (x, t )  plane which are 

qy(x, t> = 4,(& r) 
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FIG. 2. Finite element set for time interval (t,_,, 1,). 

3.3. Weak Solution for Mass Density of Component 3 

In step (iv) of the algorithm the mass density distribution of component 3 is found. 
This requires the solution of the convection-diffusion equation represented by Eqs. (1) 
and (2) subject to the jump conditions in mass density at the interface given by 
Eq. (7); the balance law around the interface, Eq. (8); and the boundary conditions 
given by Eqs. (10) and (11). 

A weak formulation for solving Eq. (1) for component 3 between two times t”-’ 
and t” consists of finding p3 E H2[0, L] x H’[tn-‘, t”] such that 

VW E L,[O, L] x L2[P, t”] (13) 

FIG. 3. Mapping of Q, elements to unit square in (c, 9) plane. 
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where p3 satisfies the boundary conditions at x = 0 and x = L and the density 
distribution at the start of the time interval. 

The spatial integration domain of Eq. (13) may be split into (0, a(t)) and (a(t), L) 
and an integration by parts performed to obtain 

1” 

J I, t”-l 
-Wdx+ [niW]g+,~dx 
0 at 

+ I y$wdx+ [n3w];-JLn3$dx( dt=O. 
a (14) 

The Neumann boundary condition (11) may be substituted to remove the 
boundary term at x = 0. Following normal practice, we also consider only those 
weighting functions w that vanish at x = L where the Dirichlet boundary condition on 
p3 is imposed, thus eliminating the boundary term at x = L in Eq. (14). The 
remaining flux terms at the interface can be eliminated using Eqs. (7) and (8) 
resulting in a weak formulation in which it is necessary to find p3 E H’ x H’ such 
that 

1, L 3P, 
1 I( 0-I 0 

atw-n3$ 
1 

dx+(u- l)p,(a(t)-,t)$w(a,t) dt=O 
I 

vwEH;XL, (15) 

where the change in function space occurs because of the changed differentiability 
requirements after integration by parts and the space of weighting functions is limited 
to those vanishing at x = L. 

From the above it is clear that we may seek an approximate solution for p3 of the 
form 

p^:,+,,- = G(t”), k=n- l,n. 

The fi:. and St. are values at nodes P; when approached from the right and left, 
respe&ely. Where the mass density is continuous these two values are identical; 
however, at the interface the values may be different. 

An obvious choice for a set of weight function {wj} suggested by the Galerkin 
method is 

w,(x, t) = en@;+ + &) + en- &jn; 1 + &j”- ‘), j= 1,J. (16) 

For the case where the node positions are constant with time the choice of 
8, = -;e,+, would be equivalent to the Faedo-Galerkin formulation with the 
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resulting set of ordinary differential equations integrated by the normal Euler method. 
8 n-l = -f/3, would correspond to integration using the backward Euler method. 8, = 
e n-l = 1 time centres the weighting, corresponding to the use of the trapezoidal 
method, and this has been used in the present model. 

Table I summarises the equations generated by the weak formulation of Eq. (15) 
when the weighting functions (16) are substituted. The integrals have been evaluated 
by Gauss-Legendre quadrature, to permit high-precision results when variable 
diffusivities and densities are used. A tridiagonal system of equations results for 
finding the nodal values {$:,}. 

3.4. Weak Solution for Velocity Field 

Step (vi) involves the determination of the velocity field U. This requires the 
solution of Eq. (6), together with the velocity boundary condition, Eq. (12), and the 
jump condition, Eq. (9). 

TABLE I 

j=l +o =o 

.j = I 

)dxdt 

=o 
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A weak formulation for solving Eq. (6) may be written: 
Find n E H’ x L, such that 

(17) 

where u satisfies the boundary condition ~(0, t) = 0 and the known velocity field at 
time t”. 

An approximate solution for u may be sought in the sub-space of H’ x L, where 13 
has the form 

with 
*k 

V ,+ = v(O, fk), k=n- l,n. 

At most internal nodes the velocity is continuous so that 

v’! = vl! I+ I- ’ 
j# l,I,Jt l,k=n- 1,n. 

However, at the interface, j = I, the velocity jump condition, Eq. (9) may be used to 
eliminate one of the two velocities on either side of the discontinuity. 

When approximation (17) is substituted into Eq. (18) with J independent weighting 
functions then a set of equations results for the nodal velocities {CT* }. If the 
weighting functions { wj ) are chosen to be those previously used, ( wj}, then alternate 
nodal velocities are uncoupled in the resulting equations so that the scheme is 
unstable. Consequently, an alternative weighting scheme has been used which takes 
advantage of the larger function space appropriate to this phase of the problem being 
solved, L, X L,. The assumed weighting functions are 

w;(X,t)=s;(e”~,(l -n)+0,n), j= l,J 

where 

and 

+ 1 if i=j 

zz 0 if i#j 

(l, r> = f ,F ‘(x, 9 

To obtain a stable scheme for calculations with variable overall density, p, we have 
taken 8, _ , = f&z. This corresponds to using a backward Euler time discretization in 
a Faedo-Galerkin formulation. 

Again the integrals represented by Eq. (17), for each wj have been evaluated by 
Gauss-Legendre quadrature. 
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3.5. Finite Element Determination of Interfacial Velocity 

The overall solution algorithm described in Section 3.1 ensures that the mass 
density distribution of component 3 and the overall velocity/density distributions 
satisfy the weak forms of their governing equations and interface jump conditions. 
The mass density distributions of components 1 and 2 can be deduced at step (v) 
using the compatibility condition given by Eq. (3). However, the corresponding 
interface jump conditions (8) relating fluxes to interface mass density values for these 
components will not be satisfied except when the interface motion is correctly 
predicted. Thus (8) can be used together with the approximate distributions ;I or p^* 
to provide an independent estimate of the interface velocity. 

In the application of the model described in this note the position of the interface 
could have been determined by conservation of the mass of component 1. However, a 
more general treatment has been sought and the mass conservation used to assess the 
convergence properties of the algorithm is described in Section 4.2. 

Bonnerot and Jamet [2,4] used a one-sided finite difference approximation to 
determine the energy flux at the interface in their Stefan problem analysis. This would 
be equivalent to using one-sided approximations to the two flux terms given by (2) 
applicable to either side of the moving interface and substituting these into (8). This 
method has not been adopted in this analysis partly because the use of finite 
differences in a solution method entirely formulated in terms of a weak formulation 
was unattractive. Also, to obtain sufficient precision Bonnerot and Jamet incor- 
porated into their finite difference expressions nodal values outside the elements 
adjacent to the interface, and this is undesirable in the present application where the 
barrier region may be reduced to a single element in thickness. 

For convenience we consider component 1 to derive the interface velocity based on 
a weak statement. The approximate mass density distribution for component 1 
satisfies a set of equations similar to those satisfied by component 3 (see Table I). In 
particular the equation for the region around the interface, j = I, must be satisfied. 
That is, 

w, dx dt - !l:“+‘,Z1l- ($) dt-jK,-,$A,dxdt=O. 

Since p^,(x, t) is available from step (v) this equation can be used to provide an 
estimate of da/dt which has been assumed to be constant over the time interval. 

3.6. Element Evolution 

The initial element structure to cover the regions 0 <x < a0 and a0 < x < L has 
been chosen in a number of ways, as described in Section 4.2. During the transient 
the element geometry is modified so that an element boundary lies along the moving 
interface. Thus, the position of one set of nodes {P:) is determined by the initial 
position of the interface, a’, and by integration of the interface velocity, da/dt: 

P,k = a(tk) = a0 + ,(I ($) dt = u” + y ($), (tj” - t’). 

j=l J 
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In normal applications of the model the nodes in the oil region {Pt: 1 < j < I) are 
chosen so that the intervals (xi”, x;+ i) grow in proportion to the overall length (0, x:) 
and nodes in the barrier region are moved so that the lengths (xi, x;+ i) remain 
constant except for the edge element KJ whose length is reduced. This last element is 
eliminated and the element KJ- 1 is extended before the element KJ degenerates into a 
triangular region. 

An alternative node-moving strategy is briefly described in Section 4.2 when it is 
used, in addition to the above, to investigate the convergence of the algorithm. 

4. NUMERICAL CALCULATIONS 

First in this section we describe five calculations which show the behaviour of the 
model. For one of these examples an approximate analytic solution can be obtained 
and the agreement between this solution and the numerical solution indicates that the 
weak formulation of the problem is consistent with the original differential statement. 
In the second sub-section the convergence and stability of the numerical method is 
discussed. 

4.1. Example Calculations 

First we consider the effects of changing only the jump condition parameter a. The 
data for these calculations are: 

a0 = 1, Z(t = 0) = 8 

L = 2, J(t = 0) = 16 

D,=D*= 1, 

p(x) = 700, 0 < x < a(t) 

= 1000, a(t) < x <L 

g(x) = 0, 

G(t) = 175, t>O 

a = 0.5; 1.0; 2.0. 

Figure 4 shows the mass density distribution for component 3 at time = 2. Note 
the jump in mass density at the interface which is moving from left to right. The 
interface moves despite the assumption of constant overall density in the two regions 
because of the addition of mass to the oil region. The time variation of the interface 
position is shown in Fig. 5. It asymptotes to a position that can be calculated by 
considering the conservation of mass of component 1. This states that 

a”py = a( w )(py - aG( “o)) 

where py is the density of the oil (700). 

(19) 
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FIG. 4. Example of mass density distributions of component 3. Effect of changing discontinuity 
jump condition. 

It is interesting that the asymptotic position is approached earlier with the smaller 
a despite the lower mass density gradients which are generated in both regions. 

Because in these sample calculations the total fluid densities within each region 
have been assumed constant, Eq. (6) shows that the mass average velocities in each 
region are constant. The velocity in the oil region is zero because of the boundary 
condition represented by Eq. (12). The mass average velocity in the water region is 
non-zero being related to the interface velocity by Eq. (9). Figure 6 shows the 
computed velocities for the sample case with a = 2, which has the highest velocities. 
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FIG. 5. Example of movement of interface. Effect of changing discontinuity jump condition. 
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FIG. 6. Interface and mass average velocities for case a = 2.0. 

As may be seen, the maximum interfacial velocity is 0.185 and the maximum mass 
average velocity is 0.055. “Wiggles” in the solution would be expected to occur when 
the fluid moves relative to the mesh to give a cell Reynolds number greater than two. 
The method of Varoghn and Finn avoided this in convection-dominated flows by 
moving the mesh at the speed of the fluid. In the present case the meshes were moved 
at speeds similar to the interface velocity, however, the relative mass average 
velocities are small enough that the cell Reynolds numbers are well below the 
stability threshold. 

In a second group of example calculations we consider the effect of changing the 
relative diffusivities in the two regions. The data for these calculations are: 

u”= 1 3 

L = 2, 

D, =0.55, D, = 5.5; 

p(x) = 700, 

= 1000, 

g(x) = 0, 

G(t) = 175, 

a = 1.0. 

I(t = 0) = 8 

J(t = 0) = 16 

D,= 5.5, D, = 0.55 

0 < x < u(t) 

u(t) < x <L 

O<t 



MASS DIFFUSION THROUGH INTERFACE 421 
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FIG. I. Example of mass density distribution of component 3. Effect of diffusivity contrasts. 

The results of these calculations using these data are shown in Figs. 7 and 8. 
With the higher diffusivity in the barrier region the interface rapidly moves towards 

L = 2. The mass density distribution shows that the timescale is being determined by 
the low rate of mass transfer in the oil region. 

With the lower diffusivity in the barrier region the timescale for the interface 
displacement is extended. The mass of component 3 in the oil is almost constant and 
the distribution in the barrier region is almost linear. Assuming that these obser- 
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FIG. 8. Example of movement of interface. Effect of diffusivity contrasts. 
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vations apply exactly from the start of the calculation, the following ordinary 
differential equation can be derived to describe the motion of the interface: 

da a(aG” - p;) + a”~‘: D, -= 
dt u(L-a) ‘Z (20) 

where Go is the constant boundary value for component 3 and py is the initial mass 
density of component 1 in the region 0 < x < a(t); this is assumed to be the same as 
the overall density in this region at all times. With the example data this equation has 
the solution 

a(t) = a0 + (1 + 0.275 . t)“‘. (21) 

The position of the interface predicted using this expression has been added to the 
numerical results shown on Fig. 7. The slight time advance of the analytic expression 
is mainly due to the time required to establish the linear distribution of components 
in the barrier region. 

4.2. Convergence and Stability of the Algorithm 

To examine convergence in the Stefan problem Bonnerot and Jamet [2,4] 
examined the position of the interface at a fixed time. An analytic result was not 
available with which to compare the calculated results and so the changes in position 
of the interface that occurred when three different numbers of elements were used 
were compared to give an estimate of the order of convergence. This analysis showed 
that second-order convergence was achieved with Q, elements of regular length and 
third order with Q2 elements (quadrilateral elements with biquadratic basis 
functions). A similar analysis applied to temperatures showed the same order of 
convergence if improved temperatures were obtained by interpolation using a 
polynomial of one degree higher order than that of the basis functions. 

As noted in Section 3.5, the problem tackled in this paper should conserve the 
overall mass of component 1 though no use is made of this in the solution algorithm. 
Consequently, the error in the numerical estimation of the mass of this component 
may be used to study convergence. The integration of the linear piecewise approx- 
imation to p3 may be integrated exactly so that the rate of convergence obtained from 
this method is the same as the rate of pointwise convergence. 

The following data, suggested by the Bonnerot-James analysis of the Stefan 
problem, has been used: 

u” = 1, 

L = 2, 

D,=D,= 1, 

p(x) = 700, 

p(x) = 1000, 

Z(t = 0) varied 

.qt = 0) = 2 x z(t = 0) 

0 < x < u(r) 

u(t) < x <L 
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g(x) = 0, O<x<a’ 

= 200 
x-a’ 2 

( ) L-a”’ aO<x<L 

G(t) = 200, 

At = a’/I(t = 0). 

First, calculations were done using an element structure which had equally spaced 
nodes in the regions. These were allowed to evolve in the way described in 
Section 3.6. Figure 6 shows the variation of the error as a function of the number of 
elements used in the calculation. The slope of the curve, 2, indicates that the 
calculation has second-order convergence. 

Almost identical results were obtained using elements whose length initially 
increased arithmetically away from the interface. 

Bonnerot and Jamet found that if the nodes in their Q, calculations were chosen so 
that the relative length of the elements was not constant, then the convergence 
deteriorated from second to first order [2]. To investigate this in the present problem 
the elements were varied as shown in Fig. 10. The behaviour of the error was plotted 
in Fig. 9 and this shows that the convergence is unaffected by the irregular spacing. 
This improvement in behaviour is attributed to the alternative method used to 
evaluate the interfacial velocity. 

The stability of the approximations is indicated by the fact that simple iteration 
has proved adequate in the outer loops of the solution algorithm described in Section 
3.1 (initial errors in a guessed solution are damped out). This has remained true when 
non-constant overall densities and interfacial density jumps of real systems have been 
incorporated into calculations of the type described above. 

D -1 -2 

LOG10 ( [y& ) 

FIG. 9. Evaluation of order of convergence of method. 
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FIG. 10. Irregular node evaluation. 

5. CONCLUSIONS 

A finite element method was used to calculate mass diffusion in a composite 
region. Within each of the two regions coupled binary convection-diffusion equations 
must be solved and the interface between the regions may move. The solution 
algorithm is iterative, based on solving the convection diffusion equation for one 
component, an overall continuity equation and calculating the interface movement 
from a weak statement of the equations satisfied by the diffusing components at the 
interface. The iterative scheme has proved stable in all the computations performed to 
date using both simplified and more physically realistic data. The convergence of the 
method is second order, corresponding to the second-order convergence obtained by 
Bonnerot and Jamet for the one-dimensional Stefan problem using Q, elements, and 
this second-order convergence is maintained when a non-uniform element evolution is 
considered. The improved behaviour of the method for irregular elements is attributed 
to the alternative treatment of the interface considered in this paper. This treatment 
has the added advantage of involving only those elements immediately adjacent to the 
interface. The model is currently being further developed to enable the mechanisms of 
EOR to be investigated on a pore scale. 
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